Elan Product Page Background Banner

The Epirus foot is a low profile multi-axial prosthetic foot for Level 3 activity, combines a compliant biomimetic ankle joint with e-carbon springs to offer superb gait symmetry and an energy efficient response.

  • Activity level 3
  • Suitable for outdoor use

Epirus Clinical Evidence Reference

Clinical Outcomes using e-carbon feet

  • Safety
    • High mean radius of curvature for Esprit-style e-carbon feet2: “The larger the radius of curvature, the more stable is the foot”
  • Mobility
    • Allow variable running speeds3
    • Increased self-selected walking speed4
    • Elite-style e-carbon feet (L code VL5987) or VT units demonstrate the second highest mobility levels, behind only microprocessor feet5
  • Loading symmetry
    • Users demonstrate confidence in prosthetic loading during high activity6
    • Improved prosthetic push-off work compared to SACH feet7
    • Increased prosthetic positive work done4
  • User satisfaction
    • High degree of user satisfaction, particularly with high activity users8

References

  • Full Reference Listing
    1. Crimin A, McGarry A, Harris EJ, et al.

      The effect that energy storage and return feet have on the propulsion of the body: A pilot study. Proc Inst Mech Eng [H] 2014; 228: 908–915.

    2. Curtze C, Hof AL, van Keeken HG, et al.

      Comparative roll-over analysis of prosthetic feet. J Biomech 2009; 42: 1746–1753.

    3. Strike SC, Arcone D, Orendurff M.

      Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Gait Posture 2018; 62: 327–332.

    4. Ray SF, Wurdeman SR, Takahashi KZ.

      Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. J Neuroengineering Rehabil 2018; 15: 6.

    5. Wurdeman SR, Stevens PM, Campbell JH.

      Mobility analysis of AmpuTees (MAAT 5): Impact of five common prosthetic ankle-foot categories for individuals with diabetic/dysvascular amputation. J Rehabil Assist Technol Eng 2019; 6: 2055668318820784.

    6. Haber CK, Ritchie LJ, Strike SC.

      Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task. Hum Mov Sci 2018; 58: 337–346.

    7. Rock CG, Wurdeman SR, Stergiou N, Takahashi KZ.

      Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses. PloS one. 2018;13(10).

    8. Highsmith MJ, Kahle JT, Miro RM, et al.

      Differences in Military Obstacle Course Performance Between Three Energy-Storing and Shock-Adapting Prosthetic Feet in High-Functioning Transtibial Amputees: A Double-Blind, Randomized Control Trial. Mil Med 2016; 181: 45–54.

    9. Moore R.

      Patient Evaluation of a Novel Prosthetic Foot with Hydraulic Ankle Aimed at Persons with Amputation with Lower Activity Levels. JPO J Prosthet Orthot 2017; 29: 44–47.

    10. Moore R.

      Effect on Stance Phase Timing Asymmetry in Individuals with Amputation Using Hydraulic Ankle Units. JPO J Prosthet Orthot 2016; 28: 44–48.

    11. Buckley JG, De Asha AR, Johnson L, et al.

      Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses. J Neuroengineering Rehabil 2013; 10: 98.

    12. Sedki I, Moore R.

      Patient evaluation of the Echelon foot using the Seattle Prosthesis Evaluation Questionnaire. Prosthet Orthot Int 2013; 37: 250–254.

    13. Rogers JP, Strike SC, Wallace ES.

      The effect of prosthetic torsional stiffness on the golf swing kinematics of a left and a right-sided trans-tibial amputee. Prosthet Orthot Int 2004; 28: 121–131. 

    14. Kobayashi T, Orendurff MS, Boone DA.

      Dynamic alignment of transtibial prostheses through visualization of socket reaction moments. Prosthet Orthot Int 2015; 39: 512–516.

    15. Wright D, Marks L, Payne R.

      A comparative study of the physiological costs of walking in ten bilateral amputees. Prosthet Orthot Int 2008; 32: 57–67.

    16. Vanicek N, Strike SC, Polman R.

      Kinematic differences exist between transtibial amputee fallers and non-fallers during downwards step transitioning. Prosthet Orthot Int 2015; 39: 322–332. 

    17. Barnett C, Vanicek N, Polman R, et al.

      Kinematic gait adaptations in unilateral transtibial amputees during rehabilitation. Prosthet Orthot Int 2009; 33: 135–147.

    18. Emmelot C, Spauwen P, Hol W, et al.

      Case study: Trans tibial amputation for reflex sympathetic dystrophy: Postoperative management. Prosthet Orthot Int 2000; 24: 79–82.

    19. Boonstra A, Fidler V, Eisma W.

      Walking speed of normal subjects and amputees: aspects of validity of gait analysis. Prosthet Orthot Int 1993; 17: 78–82.

    20. Datta D, Harris I, Heller B, et al.

      Gait, cost and time implications for changing from PTB to ICEX® sockets. Prosthet Orthot Int 2004; 28: 115–120.

    21. De Castro MP, Soares D, Mendes E, et al.

      Center of pressure analysis during gait of elderly adult transfemoral amputees. JPO J Prosthet Orthot 2013; 25: 68–75.

    22. Major MJ, Scham J, Orendurff M.

      The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system. Prosthet Orthot Int 2018; 42: 198–207.

    23. McNealy LL, A. Gard S.

      Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations. Prosthet Orthot Int 2008; 32: 111–126.

    24. Su P-F, Gard SA, Lipschutz RD, et al.

      Gait characteristics of persons with bilateral transtibial amputations. J Rehabil Res Dev 2007; 44: 491–502.

    25. Boonstra A, Fidler V, Spits G, et al.

      Comparison of gait using a Multiflex foot versus a Quantum foot in knee disarticulation amputees. Prosthet Orthot Int 1993; 17: 90–94.

    26. Gard SA, Su P-F, Lipschutz RD, et al.

      The Effect of Prosthetic Ankle Units on Roll-Over Shape Characteristics During Walking in Persons with Bilateral Transtibial Amputations. J Rehabil Res Dev 2011; 48: 1037.

    27. Major MJ, Stine RL, Gard SA.

      The effects of walking speed and prosthetic ankle adapters on upper extremity dynamics and stability-related parameters in bilateral transtibial amputee gait. Gait Posture 2013; 38: 858–863.

    28. Van der Linden M, Solomonidis S, Spence W, et al.

       A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 1999; 32: 877–889.

    29. Graham LE, Datta D, Heller B, et al.

      A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Arch Phys Med Rehabil 2007; 88: 801–806.

    30. Graham LE, Datta D, Heller B, et al.

      A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Clin Rehabil 2008; 22: 896–901.

    31. Mizuno N, Aoyama T, Nakajima A, et al.

      Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees. Prosthet Orthot Int 1992; 16: 174–182.

Epirus Documentation

  • Activity level 2
  • Activity level 3